

Mido - MIDI Objects for Python

Mido is a library for working with MIDI messages and ports. It’s
designed to be as straight forward and Pythonic as possible.

>>> import mido
>>> output = mido.open_output()
>>> output.send(mido.Message('note_on', note=60, velocity=64))

>>> with input as mido.open_input('SH-201'):
... for msg in input:
... print(msg)

>>> msg = mido.Message('program_change', program=10)
>>> msg.type
'program_change'
>>> msg.channel = 2
>>> msg2 = msg.copy(program=9)
<program_change message channel=2, program=9, time=0>

The latest version of the source code is available at:
http://github.com/olemb/mido/

Community:

http://reddit.com/r/midopy/

IRC channel #mido on freenode.net

Contents:

	Why Mido?
	Messages as Objects

	Type and Value Checking

	Tutorial
	Creating Messages

	Modifying and Copying Messages

	Comparing Messages

	System Exclusive (sysex) Messages

	Time

	Opening Ports

	Closing Ports

	Sending Messages

	Receiving Messages

	Installing Mido
	Requirements

	Installing

	Installing PortMidi

	Library Reference
	Creating Message and Opening Ports

	Parsing and Parser class

	Message Objects

	String Serialization

	Ports

	Message Types
	Parameter Types

	Parsing and Encoding Messages
	Parsing Messages

	String Encoding
	Format

	Parsing

	Examples

	Adding New Port Types
	Duck Typing

	Subclassing

	About MIDI
	Some Examples of Messages

	More About MIDI

	License

	Author
	Contact Information

	Acknowledgements

Indices and tables

	Index

	Module Index

	Search Page

Why Mido?

Messages as Objects

Have you ever had to write code like this?

NOTE_OFF = 0x80
NOTE_ON = 0x90
...
message = device.read() # Returns [0x92, 0x40, 0x42]
status_byte = message[0]
if status_byte & 0xf0 in [NOTE_ON, NOTE_OFF]:
 is_note_on == status_byte & 0x10
 if is_note_on:
 message_type = 'note_on'
 else:
 message_type = 'note_off'
 channel = message[0] & 0x0f
 print('Got {} on channel {}'.format(message_type, channel))

I have, and let me tell you, I don’t ever want to that again.

That’s why I created Mido. Now I can do this instead:

message = port.receive()
if message.type in ['note_on', 'note_off']:
 print('Got {} on channel {}'.format(message.type, message.channel))

Type and Value Checking

Working directly with the bytes is also error prone. While MIDI data
bytes have a valid range of 0..127, the size of Python integers is only
limited by how much memory is available. If you make a mistake in your
computation of a data value, it could easily travel around undetected
until it blows up some seemingly unrelated part of your system. These
kinds of errors are tricky to track down.

Mido messages come with type and value checking built in. This happens
when you assign an out of range value to an attribute:

>>> n = mido.Message('note_on')
>>> n.channel = 2092389483249829834
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "./mido/messages.py", line 327, in __setattr__
 ret = check(value)
 File "./mido/messages.py", line 128, in check_channel
 raise ValueError('channel must be in range 0..15')
ValueError: channel must be in range 0..15

and when you pass some nonsense as a keyword argument to the
constructor or the copy() method:

>>> n.copy(note=['This', 'is', 'wrong'])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "./mido/messages.py", line 316, in copy
 return Message(self.type, **args)
 File "./mido/messages.py", line 290, in __init__
 setattr(self, name, value)
 File "./mido/messages.py", line 327, in __setattr__
 ret = check(value)
 File "./mido/messages.py", line 181, in check_databyte
 raise TypeError('data byte must be an integer')
TypeError: data byte must be an integer

This means that a Mido message object is always a valid MIDI message.

Tutorial

Creating Messages

Mido allows you to work with MIDI messages as Python objects. To
create a new message, you can do:

>>> from mido import Message
>>>
>>> Message('note_on', note=60, velocity=100)
<note_on message channel=0, note=60, velocity=100, time=0>

All message parameters are optional, and if not explicitly set, will
default to 0 (or () for sysex data):

>>> Message('note_on')
<note_on message channel=0, note=0, velocity=0, time=0>
>>> Message('sysex')
<sysex message data=(), time=0>

This means that it’s important to remember to pass the velocity
parameter for note_on messages, or the note will interpreted as a
note_off on many devices.

The parameters for each message type are listed in
Message Types.

Modifying and Copying Messages

When you have created a message, the parameters are available as
attributes:

>>> msg = Message('note_off', channel=1, note=60, velocity=50)
>>> dir(msg)
[..., 'channel', 'note', 'time', 'type', 'velocity']
>>> msg.type
'note_on'
>>> msg.channel
1
>>> msg.note
60
>>> msg.channel = 2
>>> msg.note = 62
>>> msg
<note_off message channel=2, note=62, velocity=50, time=0>

You can copy a message, optionally passing keyword arguments to
override attributes:

>>> msg.copy() # Make an identical copy.
<note_on message channel=2, note=62, velocity=50, time=0>
>>> msg.copy(channel=4)
<note_on message channel=4, note=62, velocity=50, time=0>

This is useful when you pass messages around in a large system, and
you want to keep a copy for yourself while allowing other parts of the
system to modify the original.

Changing the type of a message is not allowed:

>>> msg.type = 'note_off'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "mido/messages.py", line 320, in __setattr__
 raise AttributeError('{} attribute is read only'.format(name))
AttributeError: type attribute is read only

Comparing Messages

You can compare two messages to see if they are identical:

>>> Message('note_on', note=22) == Message('note_on', note=22)
True
>>> Message('note_on') == Message('note_off')
False
>>> msg == msg.copy(note=100)
False

The time parameter (see below) is ignored when comparing messages:

>>> msg == msg.copy(time=10000)
True

This allows you to compare messages that come from different sources
and have different time stamps. If you want to include time in the comparison,
you can do:

>>> msg1 = note_on(time=2)
>>> msg2 = note_on(time=3)
>>> (msg1, msg1.time) == (msg2, msg2.time)
False

System Exclusive (sysex) Messages

Sysex messages have a data parameter, which is a sequence of bytes.
The data parameter takes any object that generates bytes when
iterated over. This is converted internally into a tuple of integers:

>>> Message('sysex')
<sysex message data=(), time=0>
>>> Message('sysex', data=[1, 2, 3])
<sysex message data=(1, 2, 3), time=0>
>>> Message('sysex', data=bytearray('abc'))
<sysex message data=(97, 98, 99), time=0>

Sysex messages inlude the sysex_end byte when sent and received, so
while there is a sysex_end message type, it is never used:

>>> msg = Message('sysex', data=[1, 2, 3])
>>> msg.hex()
'F0 01 02 03 F7'

Time

All messages also have an extra parameter time, which you can use
for anything you want. Typically this is used to tag messages with
time when storing them in files or sending them around in the
system. time can have any value as long as it’s a float or an int.

copy() will copy the time attribute.

Opening Ports

There are three types of ports in Mido: input ports, output ports and
I/O ports. They are created with:

mido.open_input(name=None)
mido.open_output(name=None)
mido.open_ioport(name=None)

(mido.open_ioport will return a port which is a thin wrapper around
an input port and an output port, and allows you to use the methods of
both. This can be used for two-way communication with a device.

You can pass the name of the port, or leave it out to open the default
port:

mido.open_input('SH-201') # Open the port 'SH-201'.
mido.open_input() # Open the default input port.

To get a list of names of available ports, you can call one of these
functions:

>>> mido.get_input_names()
['Midi Through Port-0', 'SH-201']

>>> mido.get_output_names()
['Midi Through Port-0', 'SH-201']

>>> mido.get_ioport_names()
['Midi Through Port-0', 'SH-201']

Note: If a port is open, it will still be listed here.

Closing Ports

A port can be closed by calling the close() method:

port.close()

but often it is better to use the with statement, which will close
the block automatically when the block is over:

with mido.open_output() as port:
 ...

The closed attribute will be True if the port is closed.

Sending Messages

Messages can be sent on output or I/O ports by calling the send()
method:

port.send(Message('pitchwheel', channel=2, pitch=4000))

The message will be sent immediately.

Receiving Messages

There are several different ways to receive messages. The basic one is
to call receive():

message = port.receive()

This will block until a message arrives on the port. If you want to
receive messages in a loop, you can do:

for message in port:
 ...

If you don’t want to block, you can use pending() to see how many
messages are available:

>>> port.pending()
2
>>> port.receive()
<note_on message channel=2, note=60, velocity=50, time=0>
>>> port.receive()
<note_on message channel=2, note=72, velocity=50, time=0>
>>> port.receive()
 *** blocks until the next message arrives ***

It is often easier to use iter_pending():

while 1:
 for message in port.iter_pending():
 ... # Do something with message.

 ... Do other stuff.

Messages will be queued up inside the port object until you call
receive() or iter_pending().

If you want to receive messages from multiple ports, you can use
multi_receive():

from mido.ports import multi_receive

while 1:
 for message in multi_receive([port1, port2, port3]):
 ...

The ports are checked in random order to ensure fairness. There is
also a non-blocking version of this function:

while 1:
 for message in multi_iter_pending([port1, port2, port3]):
 ...

Installing Mido

Requirements

Mido targets Python 2.7 and 3.2 and runs on Ubuntu and Mac OS X. May
also run on other systems.

If you want to use message ports, you will need PortMidi [http://sourceforge.net/p/portmedia/wiki/portmidi/] installed on
your system. The PortMidi library is loaded on demand, so you can use
the parser and messages without it.

Installing

To install:

$ pip install mido

The PortMidi wrapper is written with ctypes, so no compilation is
required.

Installing PortMidi

If you want to use ports, you need the PortMidi shared library. The
Ubuntu package is called libportmidi-dev. PortMidi is also
available in MacPorts [http://www.macports.org/] and Homebrew [http://mxcl.github.io/homebrew/] under the name portmidi.

Library Reference

Creating Message and Opening Ports

	
mido.open_input(name=None)

	Open an input port.

	
mido.open_output(name=None)

	Open an output port.

	
mido.open_ioport(name=None)

	Open a port for input and output.

	
mido.get_input_names()

	Return a sorted list of all input port names.

These names can be passed to Input().

	
mido.get_output_names()

	Return a sorted list of all input port names.

These names can be passed to Output().

	
mido.get_ioport_names()

	Return the names of all ports that allow input and output.

Parsing and Parser class

	
mido.parse(data)

	Parse MIDI data and return the first message found.

Data after the first message is ignored. Use parse_all()
to parse more than one message.

	
mido.parse_all(data)

	Parse MIDI data and return a list of all messages found.

This is typically used to parse a little bit of data with a few
messages in it. It’s best to use a Parser object for larger
amounts of data. Also, tt’s often easier to use parse() if you
know there is only one message in the data.

	
class mido.Parser

	MIDI Parser

Parses a stream of bytes and produces messages.

Data can be put into the parser in the form of
integers, byte arrays or byte strings.

	
feed(data)

	Feed MIDI data to the parser.

Accepts any object that produces a sequence of integers in
range 0..255, such as:

[0, 1, 2]
(0, 1, 2)
[for i in range(256)]
(for i in range(256)]
bytearray()
b’’ # Will be converted to integers in Python 2.

	
feed_byte(byte)

	Feed one MIDI byte into the parser.

The byte must be an integer in range 0..255.

	
get_message()

	Get the first parsed message.

Returns None if there is no message yet. If you don’t want to
deal with None, you can use pending() to see how many messages
you can get before you get None.

	
pending()

	Return the number of pending messages.

Message Objects

	
class mido.Message(type_, **parameters)

	MIDI message class.

	
bin()

	Encode message and return as a bytearray.

This can be used to write the message to a file.

	
bytes()

	Encode message and return as a list of integers.

	
copy(**overrides)

	Return a copy of the message.

Attributes will be overriden by the passed keyword arguments.
Only message specific attributes can be overridden. The message
type can not be changed.

Example:

a = Message(‘note_on’)
b = a.copy(velocity=32)

	
hex(sep=' ')

	Encode message and return as a string of hex numbers,

Each number is separated by the string sep.

String Serialization

There is not format_as_string(), but you can use str(message).

	
mido.parse_string(text)

	Parse a string of text and return a message.

The string can span multiple lines, but must contain
one full message.

Raises ValueError if the string could not be parsed.

	
mido.parse_string_stream(stream)

	Parse a stram of messages and yield (message, error_message)

stream can be any iterable that generates text strings. If
a line can be parsed, (message, None) is returned. If it can’t
be parsed (None, error_message) is returned. The error message
containes the line number where the error occured.

Ports

	
class mido.ports.BaseInput(name=None)

	Base class for input port.

Override _pending() to create a new input port type.
(See portmidi.py for an example of how to do this.)

	
close()

	Close the port.

If the port is already closed, nothing will happen. The port
is automatically closed when the object goes out of scope or
is garbage collected.

	
iter_pending()

	Iterate through pending messages.

	
pending()

	Return how many messages are ready to be received.

This can be used for non-blocking receive(), for example:

	for _ in range(port.pending()):

	message = port.receive()

If this is called on a closed port, it will work as if
the port was opened, but no new messages will be returned
once the buffered ones run out.

	
receive()

	Return the next message.

This will block until a message arrives. For non-blocking
behavior, you can use pending() to see how many messages can
safely be received without blocking.

NOTE: Blocking is currently implemented with polling and
time.sleep(). This is inefficient, but the proper way doesn’t
work yet, so it’s better than nothing.

Todo: What should happen when the port is closed?
- raise exception?
- return pending messages until we run out, then raise exception?

	
class mido.ports.BaseOutput(name=None)

	Base class for output port.

Subclass and override _send() to create a new port type. (See
portmidi.py for how to do this.)

	
close()

	Close the port.

If the port is already closed, nothing will happen. The port
is automatically closed when the object goes out of scope or
is garbage collected.

	
send(message)

	Send a message on the port.

The message is sent immediately.

	
class mido.ports.IOPort(input, output)

	Input / output port.

This is a convenient wrapper around an input port and an output
port which provides the functionality of both. Every method call
is forwarded to the appropriate port.

	
close()

	Close the port.

If the port is already closed, nothing will happen. The port
is automatically closed when the object goes out of scope or
is garbage collected.

	
iter_pending()

	Iterate through pending messages.

	
pending()

	Return how many messages are ready to be received.

This can be used for non-blocking receive(), for example:

	for _ in range(port.pending()):

	message = port.receive()

If this is called on a closed port, it will work as if
the port was opened, but no new messages will be returned
once the buffered ones run out.

	
receive()

	Return the next message.

This will block until a message arrives. For non-blocking
behavior, you can use pending() to see how many messages can
safely be received without blocking.

NOTE: Blocking is currently implemented with polling and
time.sleep(). This is inefficient, but the proper way doesn’t
work yet, so it’s better than nothing.

Todo: What should happen when the port is closed?
- raise exception?
- return pending messages until we run out, then raise exception?

	
send(message)

	Send a message on the port.

The message is sent immediately.

	
mido.ports.multi_receive(ports)

	Receive messages from multiple ports.

Generates (message, port) tuples from every port in ports. The
ports are polled in random order for fairness, and all messages
from each port are yielded before moving on to the next port.

	
mido.ports.multi_iter_pending(ports)

	Iterate through all pending messages in ports.

ports is an iterable of message ports to check.

Yields (message, port) tuples until there are no more pending
messages. This can be used to receive messages from
a set of ports in a non-blocking manner.

Message Types

	Name

	Keyword Arguments / Attributes

	note_off

	channel note velocity

	note_on

	channel note velocity

	polytouch

	channel note value

	control_change

	channel control value

	program_change

	channel program

	aftertouch

	channel value

	pitchwheel

	channel pitch

	sysex

	data

	undefined_f1

	

	songpos

	pos

	song_select

	song

	undefined_f4

	

	undefined_f5

	

	tune_request

	

	sysex_end

	

	clock

	

	undefined_f9

	

	start

	

	continue

	

	stop

	

	undefined_fd

	

	active_sensing

	

	reset

	

Parameter Types

	Name

	Valid Range

	Default Value

	channel

	0..15

	0

	control

	0..127

	0

	note

	0..127

	0

	program

	0..127

	0

	song

	0..127

	0

	value

	0..127

	0

	velocity

	0..127

	0

	data

	(0..127, 0..127, …)

	() (empty tuple)

	pitch

	-8192..8191

	0

	pos

	0..16383

	0

	time

	any integer or float

	0

velocity for note_off is release velocity, that is how quickly the
note was released. Few instruments support this.

The time parameter is not included in the encoded message, and is
(currently) not used by Mido in any way. You can use it for whatever
purpose you wish.

The data parameter accepts any iterable that generates numbers in
0..127. This includes:

mido.Message('sysex', data=[1, 2, 3])
mido.Message('sysex', data=range(10))
mido.Message('sysex', data=(i for i in range(10) if i % 2 == 0))

For details about the binary encoding of MIDI message, see:

http://www.midi.org/techspecs/midimessages.php

Parsing and Encoding Messages

MIDI is a binary protocol, which means when sending a message to a
device, it is encoded as one or more consecutive bytes.

The input and output ports will decode and encode messages for you, so
unless you’re implementing a new MIDI backend or a file reader /
writer, there is little use for this.

Message objects have a few methods that make encoding easy:

>>> n = Message('note_on', channel=2, note=60, velocity=100, time=3)
>>> n.bytes()
[146, 60, 100]
>>> n.hex()
'92 3C 64'
>>> n.hex(sep='-')
'92-3C-64'
>>> n.bin()
bytearray(b'\x92<d')

System Exclusive messages include the end byte (0xf7):

>>> Message('sysex', data=[1, 2, 3]).hex()
'F0 01 02 03 F7'

This means, the sysex_end() message type is needed.

For the full table of MIDI binary encoding, see:
http://www.midi.org/techspecs/midimessages.php

Parsing Messages

If you’re implementing a new port type or support for a binary file
format, you may need to parse binary MIDI messages. Mido has a few
functions and one class that make this easy.

To parse a single message:

>>> mido.parse([0x92, 0x10, 0x20])
<note_on message channel=0, note=16, velocity=32, time=0>

parse() will only return the first message in the byte stream. To
get all messages, use parse_all().

The functions are just shortcuts for the full Parser
class. This is the parser used inside input ports to parse incoming
messages. Here are a few examples of how it can be used:

>>> p = mido.Parser()
>>> p.feed([0x90, 0x10, 0x20])
>>> p.pending()
1
>>> p.get_message()
<note_on message channel=0, note=16, velocity=32, time=0>
>>> p.feed_byte(0x90)
>>> p.feed_byte(0x10)
>>> p.feed_byte(0x20)
>>> p.get_message()
<note_on message channel=0, note=16, velocity=32, time=0>

get_message() will return None if there are no messages ready to
be gotten.

feed() accepts any iterable that generates integers in 0..255. This
includes:

p.feed([0x90, 0x10, 0x20])
p.feed((i for i in range(256)))

The messages will stay in an internal queue intil you pull them out
with get_message() or for message in parser:.

The parser will skip and stray status bytes or data bytes, so you can
safely feed it random data and see what comes out the other end.

String Encoding

Mido messages can be serialized to a text format, which can be used to
safely store messages in text files, send them across sockets or embed
them in JSON, among other things.

To encode a message, simply call str() on it:

>>> n = control_change(channel=9, control=1, value=122, time=60)
>>> str(n)
'control_change channel=9 control=1 value=122 time=60'

Format

The format is simple:

MESSAGE_TYPE [PARAMETER=VALUE ...]

These are the same as the arguments to mido.Message(). The order
of parameters doesn’t matter, but each one can only appear once.

Only these character will ever occur in a string encoded Mido message:

[a-z][0-9][=_.+()]

or written out:

'abcdefghijklmnopqrstuvwxyz0123456789 =_.+()'

This means the message can be embedded in most text formats without
any form of escaping.

Parsing

To parse a message, you can use mido.parse_string():

>>> parse_string('control_change control=1 value=122 time=0.5')
<control_change message channel=0, control=1, value=122, time=0.5>

Parameters that are left out are set to their default
values. ValueError is raised if the message could not be
parsed. Extra whitespace is ignored:

>>> parse_string(' control_change control=1 value=122')
<control_change message channel=0, control=1, value=122, time=0>

To parse messages from a stream, you can use
mido.messages.parse_string_stream():

for (message, error) in parse_string_stream(open('some_music.text')):
 if error:
 print(error)
 else:
 do_something_with(message)

This will return every valid message in the stream. If a message could
not be parsed, message will be None and error will be an error
message describing what went wrong, as well as the line number where
the error occured.

The argument to parse_string_stream() can be any object that
generates strings when iterated over, such as a file or a list.

parse_string_stream() will ignore blank lines and comments (which
start with a # and go to the end of the line). An example of valid
input:

A very short song with an embedded sysex message.
note_on channel=9 note=60 velocity=120 time=0
Send some data

sysex data=(1,2,3) time=0.5

pitchwheel pitch=4000 # bend the not a little time=0.7
note_off channel=9 note=60 velocity=60 time=1.0

Examples

And example of messages embedded in JSON:

{'messages': [
 '0.0 note_on channel=9 note=60 velocity=120',
 '0.5 sysex data=(1,2,3)',
 ...
])

Adding New Port Types

Mido comes with support for PortMidi built in, and experimental
support for RtMidi through the python-rtmidi package. If you want to
use some other library or system, like say PyGame, you can write write
custom ports.

There are two ways of adding new port types to Mido.

Duck Typing

The simplest way is to just create an object that has the methods
that you know will be called, for example:

class PrintPort:
 """Port that prints out messages instead of sending them."""

 def send(self, message):
 print(message)

port = PrintPort()
port.send(mido.Message('note_on')

Subclassing

If you want the full range of behaviour, you can subclass the abstract
port classes in mido.ports:

from mido.ports import BaseInput, BaseOutput

class PortCommon(object):
 ... Mixin for things that are common to your Input and Output
 ... ports (so you don't need a lot of duplicate code.

 def _open(self, **kwargs):
 ... This is where you actually # open
 ... the underlying device.
 ...
 ... self.name will be set to the name that was passed
 ... **kwargs will be passed to you by __init__()

 def _close(self):
 ... Close the underlying device.

 def _get_device_type(self):
 ... A text representation of the type of device,
 ... for example 'CoreMidi' or 'ALSA'. This is
 ... used by __repr__(). Defaults to 'Unknown'.
 return 'CoreMidi' # For example.

class Input(PortCommon, BaseInput):
 def _pending(self):
 ... Check for new messages, feed them
 ... to the parser and return how many messages
 ... are now available.

class Output(PortCommon, BaseOutput):
 def _send(self, message):
 ... Send the message via the underlying device.

The base classes will take care of everything else. You may still
override selected methods if you need to.

All the methods you need to override start with an underscore and is
are called by the corresponding method without an underscore. This
allows the base class to do some type and value checking for you
before calling your implementation specific method. It also means you
don’t have to worry about adding doc strings.

See mido.portmidi.py and extras/mido_rtmidi.py for full examples.

About MIDI

MIDI is a simple binary protocol for communicating with synthesizers
and other electronic music equipment.

It was developed in 1981 by Dave Smith and Chet Wood of Sequential
Circuits with the assistance of Ikutaro Kakehashi of Roland. MIDI was
quickly embraced by all the major synth manufacturers, and led to
developments such as microcomputer sequencers, and with them the
electronic home studio. Although many attempts have been made to
replace it, it is still the industry standard.

MIDI was designed for the 8-bit micro controllers found in synthesizers
at the beginning of the 80’s. As such, it is a very minimal
byte-oriented protocol. The message for turning a note on is only
three bytes long (here shown in hexadecimal):

92 3C 64

This message consists of:

92 -- 9 == message type note on
 2 == channel 2

3C -- note 60 (middle C)

64 -- velocity (how hard the note is hit)

The first byte is called a status byte. It has the upper bit set,
which is how you can tell it apart from the following data
bytes. Data bytes as thus only 7 bits (0..127).

Each message type has a given number of data bytes, the exception
being the System Exclusive message which has a start and a stop byte,
and can have any number of data bytes in-between these two.

Messages can be divided into four groups:

	Channel messages. These are used to turn notes on and off, to change
patches and change controllers (pitch bend, modulation wheel, pedal
and many others).

	System common messages.

	System real time messages, the include start, stop, continue, song
position (for playback of songs) and reset.

	System Exclusive messages (often called Sysex messages). These are
used for sending and receiving device specific such as patch data.

Some Examples of Messages

Turn on and off middle C
92 3C 64 note_on channel=2 note=60 velocity=100
82 3C 64 note_off channel=2 note=60 velocity=100

Program change with program=4 on channel 2.
(The synth will switch to another sound.)
C2 04

Continue. (Starts a song that has been paused.)
FB

Data request for the Roland SH-201 synthesizer.
F0 41 10 00 00 16 11 20 00 00 00 00 00 00 21 3F F7

More About MIDI

	Wikipedia’s page on MIDI [https://en.wikipedia.org/wiki/Midi]

	MIDI Manufacturers Association [http://www.midi.org/]

	A full table of MIDI messages [http://www.midi.org/techspecs/midimessages.php]

License

The MIT License (MIT)

Copyright (c) 2013-infinity Ole Martin Bjørndalen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Author

Ole Martin Bjørndalen

The PortMidi wrapper is based on portmidizero by Grant Yoshida.

Contact Information

ombdalen@gmail.com

Username on Reddit: /u/halloi/

Nick on freenode: olemb

Acknowledgements

Thanks to /u/tialpoy/ on Reddit for extensive code review and helpful
suggestions.

The PortMidi wrapper is based on portmidizero by Grant Yoshida.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mido	

 	
 	
 mido.ports	

Index

 B
 | C
 | F
 | G
 | H
 | I
 | M
 | O
 | P
 | R
 | S

B

 	
 	BaseInput (class in mido.ports)

 	BaseOutput (class in mido.ports)

 	
 	bin() (mido.Message method)

 	bytes() (mido.Message method)

C

 	
 	close() (mido.ports.BaseInput method)

 	(mido.ports.BaseOutput method)

 	(mido.ports.IOPort method)

 	
 	copy() (mido.Message method)

F

 	
 	feed() (mido.Parser method)

 	
 	feed_byte() (mido.Parser method)

G

 	
 	get_input_names() (in module mido)

 	get_ioport_names() (in module mido)

 	
 	get_message() (mido.Parser method)

 	get_output_names() (in module mido)

H

 	
 	hex() (mido.Message method)

I

 	
 	IOPort (class in mido.ports)

 	
 	iter_pending() (mido.ports.BaseInput method)

 	(mido.ports.IOPort method)

M

 	
 	Message (class in mido)

 	mido (module)

 	
 	mido.ports (module)

 	multi_iter_pending() (in module mido.ports)

 	multi_receive() (in module mido.ports)

O

 	
 	open_input() (in module mido)

 	
 	open_ioport() (in module mido)

 	open_output() (in module mido)

P

 	
 	parse() (in module mido)

 	parse_all() (in module mido)

 	parse_string() (in module mido)

 	parse_string_stream() (in module mido)

 	
 	Parser (class in mido)

 	pending() (mido.Parser method)

 	(mido.ports.BaseInput method)

 	(mido.ports.IOPort method)

R

 	
 	receive() (mido.ports.BaseInput method)

 	(mido.ports.IOPort method)

S

 	
 	send() (mido.ports.BaseOutput method)

 	(mido.ports.IOPort method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Mido - MIDI Objects for Python

 		
 Why Mido?

 		
 Messages as Objects

 		
 Type and Value Checking

 		
 Tutorial

 		
 Creating Messages

 		
 Modifying and Copying Messages

 		
 Comparing Messages

 		
 System Exclusive (sysex) Messages

 		
 Time

 		
 Opening Ports

 		
 Closing Ports

 		
 Sending Messages

 		
 Receiving Messages

 		
 Installing Mido

 		
 Requirements

 		
 Installing

 		
 Installing PortMidi

 		
 Library Reference

 		
 Creating Message and Opening Ports

 		
 Parsing and Parser class

 		
 Message Objects

 		
 String Serialization

 		
 Ports

 		
 Message Types

 		
 Parameter Types

 		
 Parsing and Encoding Messages

 		
 Parsing Messages

 		
 String Encoding

 		
 Format

 		
 Parsing

 		
 Examples

 		
 Adding New Port Types

 		
 Duck Typing

 		
 Subclassing

 		
 About MIDI

 		
 Some Examples of Messages

 		
 More About MIDI

 		
 License

 		
 Author

 		
 Contact Information

 		
 Acknowledgements

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

